Image based BrachytherapyHDR applications in Partial Breast Irradiation

Yakov Pipman, Ph.D.
Long Island Jewish Medical Center

Acknowledgements

- Hani Gaballa, PhD
- Doracy P. Fontenla, PhD
- Lorraine Marin, MD
- May Lim, MD

JEJJ Jodeatios Breest コ1」

- External Beam Radiation Therapy
- Classical 2-D planning
- 3D-Conformal RT (3D-CRT)
- IMRT - Forward planning
- Localjzed boost
- LDR Brachytherapy

NSABP PROTOCOL B-39 RTOG PROTOCOL 0413

Randlomized Phase 3 Stucly of Conventional Whole Breast Racliation Versus Partial Breast Racliation for Women With Stage 0,1 , or 2 Breast Cancer
\section*{LIJ-NSUH Co-Principal Investigators Lorraine Marin, M.D. Lora Weiselberg,M.D.}

GOA1

EVALUATE EFFECTIVENESS OF PARTIAL BREAST IRRADIATION (PBI) COMPARED TO WHOLE BREAST (WBI) RADIATION IN PROVIDING LOCAL TUMOR CONTROL IN THE BREAST FOLLOWING LUMPECTOMY

- local control in area of LUMPECTOMY SAME, WHETHER PATIENT TREATED WITH WBI OR PBI (3-4\% LOCAL RECURRENCE)
- INCIDENCE OF GELSEWHERE FAILURES' IN IPSILATERAL BREAST SAME AS THE UNTREATED CONTRALATERAL BREAST

－HENALE MHO IS 18 YEATS OR OLDEB
 ジ
－DCJS OR JJVASJVE ADEJOGALCJNOJA
 wilicjus
－parjents Mhtr juvasjye Bizastr cincer just hlay AXILLAIY STAGJG（SENTJJL NODE ORAXILLASY

 SUiçiy

 ジぢ｣
 JEGHJQUE HOi MHGH RADAJION ONGOLOGY

Patients with Stage 0, I, or II Breast Cancer Resected by Lumpectomy

Tumor Size $\leq 3.0 \mathrm{~cm}$

No More Than 3 Histologically Positive Nodes

STRATIFICATION

- Disease Stage (DCIS only; invasive and node negative; invasive with 1-3 positive nodes)
- Menopausal Status (premenopausal, postmenopausal)
- Hormone Receptor Status (ER-positive and/or PgR-positive; ER-negative and PgR-negative)
- Intention to Receive Chemotherapy (yes or no)

GROUP 2* Partial Breast Irradiation (PBI)***

> 34 Gy in 3.4 Gy fractions using multi-catheter brachytherapy
or
34 Gy in 3.4 Gy fractions using MammoSite ${ }^{\circledR}$ balloon catheter or
38.5 Gy in 3.85 Gy fractions using 3D conformal external beam radiation

For all PBI techniques: RT given to index quadrant only, BID (with a fraction separation of at least 6 hours), for a total of 10 treatments given on 5 days over a period of 5 to 10 days.

CT based pre-Planning for PBI

- CT acquired with the patient in the treatment position. For patients on Protocol this means:
- Acquisition parameters:
- Table index $=3 \mathrm{~mm}$
- Slice thickness $=3 \mathrm{~mm}$
- Two setup points for central axis entrance/exit position - as if the patient is treated with external beam with the appropriate gantry angle - are needed to assist in planning and treatment if the patient is randomized to external beam
- WBI 50 Gy in 2 Gy daily fractions or 50.4 Gy in 1.8 daily fractions, 5 days/week
- Photon or electron boosts are permitted but are not required and may deliver 10-14 Gy in 5-7 fractions to
- Mammosite catheter will be placed by closed catheter technique only and as soon as possible after randomization has taken place
- 10 mm of breast tissue surrounding the Iumpectomy cavity, as delineated by the CT scan, will be treated for 34 Gy in 10 fractions, 2 fractions per day in 5 days, over 5-10 days period
- Minimum balloon surface to skin distance of 5 mm , although ideally should be 7 mm or more
- To assure continued integrity of balloon throughout treatment, ultrasound or x-ray verification must be done prior to each treatment to evaluate for any change in balloon diameter
- Interstitial catheters must be placed by closed cavity technique immediately after randomization
- A 15 mm width of tissue around the lumpectomy cavity, as outlined from the CT scan, will be treated with a dose of 34 Gy, delivered in 10 fractions in 5 days, over a period of $5-10$ dlays, with minimum of 6 hours between fractions
- Only HDR (High Dose Rate) radiation allowed

Brachytherapy Simulation and Treatment with the Mammosite Applicator

The ery

 - Radiation is delivered via a high-dose rate (HDR) remote
 afterloader unde precise computer control
 -The MammoSite RTS
 is compatible with
 Nucletron, Varian
 and GammaMed
 HDR afterloader equipment
 An ${ }^{15} / \mathrm{Ir}$ source (connected to HDR afterloader, above) is positioned within the center of the MammoSite balloon to deliver a highly conformal dose to the area immediately surrounding the resected tumor
 \rightarrow A trocar is used to create a pathway to the lumpectomy cavity for insertion of the catheter
 - The MammoSite RTS is inflated with saline to allow the surrounding tissue to conform to the balloon

Mammosite Treatment Prescription

- Dose is prescribed to a distance of 1.0 cm. from the surface of the Balloon
- Prescription
 dose is 34 Gy in 10 Fractions, bil.d.
تّ

A veriety of wammostice balloon designs a Jow acconaoclation of vemous cavity shapes-and-sizes

Balloon Configuration
4-5 cm Sphere
5-6 cm Sphere
4×6 cm Ellipsoidal

GT based Patient Evaluation for PBI with Mammosite balloon

- Assess the lumpectomy cavity size, shape and location for MammoSite eligibility
- Minimum balloon size is 35 cc
- The cavity will stretch with the balloon in place, however, cavities less than 15 cc are too small
- Cavity proximity to the chest wall should not deform the balloon geometry.
- Asymmetry along the balloon transverse diameters should not exceed 2 mm
- Distance to skin should be less than 6 mm
- The cavity shape must meet the conformance criteria.
- Conformance factor should be within 90%.

Appropriateness Griteria for Treatment

- Balloon Volume: 35cc-70cc
- Balloon Surface Dose: $\mathbf{4 2 0 0 \%}$ of the Prescribed Dose
- Skin Dose: $\mathbf{4 1 5 0 \%}$ of the Prescribed Dose
- Balloon Conformity To the

Table 1: Physical Characteristics for the Variably Inflated $\mathbf{4 - 5} \mathbf{~ c m ~ M a m m o S i t e ~}$

MammaSite Nominal Fill Volume (cc)	Wioth (cm)	Length (cm)	Dose Rate (cGv/min/Cii* (a) 1 cm
34	4.00	4.00	8.43
36	4.05	4.05	8.20
38	4.15	4.10	7.98
40	4.20	4.10	7.79
42	4.30	4.15	7.58
44	4.35	4.20	7.44
46	4.45	4.25	7.27
48	4.50	4.30	7.10
50	4.55	4.30	6.97
52	4.65	4.35	6.83
54	4.70	4.35	6.70
56	4.75	4.40	6.58
58	4.85	4.40	6.44
60	4.90	4.45	6.35
62	4.95	4.50	6.26
64	5.00	4.55	6.15
66	5.05	4.60	6.05
68	5.10	4.60	5.97
70	5.15	4.65	5.89

* Dose Rate calculation is at $\mathbf{1 ~ c m}$ off the balloon surface

Radiation Oncologist

- CT Simulation:
- Palpate and mark the skin point closest to the balloon
- Place an aluminum wire over the mark in a Sup-Inf direction
- Approve/ Reject Appropriateness of the MammoSite for Treatment.
- Daily Simulation: Approves Balloon Volume and Position (variation <10\%)
- Balloon Re-inflation and/or replacement (e.g.: if the balloon ruptures during the treatment).
- Administer the Daily Treatments.
- Deflate and remove the Balloon in case of Emergency during the Radiation Treatment.
- Deflate and remove the Balloon at the end of Treatment

Radiation Therapist

- CT Simulation:
- Position patient
- Place an aluminum wire over the skin mark in a Sup-Inf direction
- Acquire CT study and transfer to VoxelQ.
- Reference Simulation
- Obtain pair of simulation films for reference and for verification of DRR's
- Dailyz
- Acquire single view film at Oldelft Simulator before each fraction.
- Lead Patient to HDR Room and set for treatment

Medical Physicist

- CT Simulation
- Perform virtual simulation and analysis to obtain parameters for the appropriateness evaluation
- Derive parameters for Glancing BEV and generate DRR's
- Determine the optimum position for the radiation source
- Generate Brachytherapy Isodose plan and DVH's
- Determine treatment time according to source activity
- Reference Simulation
- Analyze reference Appositional Film and Glancing BEV film.
- Verify agreement with CT Sim DRR's.
- Obtain approval from Radiation Oncologist
- Daily Simulation:
- Analyze reference film for Volume and Position
- Assist RO with Balloon Re-inflation and/or replacement if needed

Medical Physicist - II

- Daily Treatments
- Prepare HDR unit and perform daily QA.
- Document test results for each fraction
- Program and check HDR treatment parameters for each fraction. Adjust and verify treatment times.
- Monitor treatment at the control, as per regulations
- Survey Patient and Room after each treatment fraction
- Perform continuing QA, capture charges and maintain HDR equipment and source Records
- Assist RO in Deflating and removing the Balloon in case of Emergency during the Radiation Treatment.
- Review chart at completion of treatment

Nurse

- Monitor patient status throughout treatment period.
- Assist RO in Deflating and removing the Balloon at end of Treatment.
- Review chart at completion of treatment

Patient Information

Patient Name:
Radiation Oncologist
Medical Record Number Medical Physicist:

Surgery Information:

1. Balloon Placement Date
2. Fill Volume (cc)

CT Scan Protocol Parameters:
-Protocol Name: Table Top Brain
-Couch Index: 1 mm
Scanning Length: Estimated Balloon Diameter +5 cm
Virtual Simulation Appositional Plane Film Setup Parameters:
-Gantry Angle
-Couch Angle
Evaluation of Balloon Parameters From Virtual Simulation

1. Measured Balloon Length (mm)
2. Measured Balloon Maximum Transverse Width (mm)
3. Corresponding Balloon Volume from Table (cc):
4. Balloon Lateral Shift (mm)
5. HDR Final Indexer Position (mm)

6 .Balloon Asymmetry (mm)
7. Conformance of Lumpectomy Cavity to Balloon Volume

Virtual Simulation Min. Skin Spacing BEV Setup Parameters
-Couch Lateral Shift from Balloon Center
-Couch Vertical Shift from Balloon Center
-Gantry Angle: Couch Angle
Estimated Min. Skin Spacing (mm):

Appropriateness of Radiation Therapy Treatment

1. Assessment of Balloon Asymmetry (Tolerance $<2.0 \mathrm{~mm}$) Acceptable
2. Assessment of Balloon Conformance (Tolerance > 90\%) Good Conformance
3. Assessment of Minimum Skin Spacing (Tolerance $>7.0 \mathrm{~mm}$) Acceptable:

CT Simulation

- Appositional Plane BEV: (Balloon Length Balloon Width, Balloon Asymmetry, Balloon Asymmetry, Balloon

Determination of Balloon Volume

Localize the Center of the Balloon

For an arbitrarily oriented balloon, only the central cut will

 show the catheter in the center of the balloon's cross section

Measure the distance from the Balloon

 to the Skin

Step 1- Isocenter approximately at center of balloon

Step 2 - couch is potated to bring the Gatheter to the plane of Gandry fotation

Step 3 - Rotate the Gantry to Obtain the Jaximun catheter span

Find the Glacing Angle View Neasure Distance to skin

Date:

Patient Information:
Patient Name :
Radiation Oncologist

Medical Record Number:

 Physicist:CT Virtual Simulation Appositional Plane Film Setop Parameters
Gantry Angle: Couch Angle:

Measured Balloon Parameters from Apposition Film
-Balloon Length (mm):
-Balloon Max. Transverse Width (mm)
-HDR Final Indexer Position (mm):
-Balloon Asymmetry (mm):
CT Virtual Simulation Min. Skin Spacing Glancing Film Setup Parameters:
Couch Lateral Shift from Balloon Center (Lt +ve):
Couch Vertical Shift from Balloon Center
Gantry Angle
Coach Angle
Measured Min. Skin Spacing From Glancing Film (mm):

Radiograph Appositional Plane Film Setup Parameters:

Gantry Angle
Couch Angle:
KVP
MAS

Measured Balloon Parameters From Radiograph:
-Balloon Length (mm):
-Balloon Max. Transverse Width (mm):
-HDR Final Indexer Position (mm):
-Balloon Asymmetry (mm)

Radiograph Min. Skin Spacing Glancing Film Setup Parameters:

Gantry Angle:
Couch Angle:
KVP:
MAS:

Measured Min. Skin Spacing From Radiograph:
31) Dose suffece erounc balloon plato systen 3

DV/H Jor the Belloon

DVH 1 : Cunulative DVH on Binpon. State Conslatent

(]] T) LONGISLAND IEWISH MEDICAL CENTER Radiation Oncology Department
 MammoSite-Ballo on Daily Simulation Volumetric Assessment

Patient Information
Patient Name \qquad Patient ID \qquad
Physician: \qquad Physicist:

Initial Simulation Setup Parameters + Ballo on Geometry
Apposition Film:

Gantry Angle:
Radiograph (KVP/MAS):
Source-to-Balloon Distance (mm)
Reference Balloon Length (mm):
Calculated Balloon Volume From Table (cc)

Couch Angle:
Source to Film Distance (mm)
Reference Balloon Max. Transverse Width (mm):

DAILY SIMULATION

Fraction \#	Date	Balloon Length/ max trvs. width (mm)	Estimated Balloon Volume (cc)	Balloon Variation (cc)	Volume Added (cc)	Physician	Physicist	Therapist

[^0]Figure 7: Simulation Film of Dummy Seed Train Inside MammoSite Balloon

Length $=995 \mathrm{~mm}$

Distance to center $=970 \mathrm{~mm}$

Radiation Oncologist has to be prepared to deflate and remove the applicator. Have a long forceps, a 60 ce syringe and sterile dressings available for immediate use.

1. If the source fails to retract to the safe depress RED EMERCENCY Button on master emergency stop switch. If the source retracts go to step 4.
2. Immediately open the door to the treatment unit. Access the Gold hand crank on top of the HDR unit. Tum it in the direction of the arrows (on the hand crank). If the source retracts check the patient for radiation. If no radiation is detected Go to step 4.
3. If radiation is detected or if manual retraction fails the MammoSite applicator has to be removed immediately. Do not attempt to cut the Catheter. Radiation Oncologist has to deflate the balloon and remove the applicator. Using long forceps insert the applicator containing the source into the well. Guide the transfer tube through the recess at the container edge. Immediately assist the patient from the room. Leave the room and mark it No Entry.
4. Retain the treatment data printout and contact the following: -HDR/Nucletron Representative: Tel. (800) 336-2249 -Radiation Safety Officer: (Beeper) Tel. (718) 448-7548 Do not attempt to use the unit until the problem is cleared.
5. The unintended radiation dose to which those present have been subjected should be estimated and recorded.

Elliptical Balloon Conforms the Dose Closely Around the Cavity, While Sparing Radiation to the Adjacent Lung and Heart

GT based Patient Evaluation for PBI with Multi-catheter volume implant

- Form, volume and location are somewhat less restrictive with multi-catheter treatment than for Mammosite
- The cavity should be identifiable on CT.
- Surgical clips, implanted during the lumpectomy at all margins, are ideal to facilitate this task

GT based pre-Planning for PBI

Delineation of volumes for PBI on CT

- The
lumpectomy cavity is drawn by the MD on all GT slices.
- The PTV is generated by adding a 15 mm margin.
- The PTV is further modified to exclude the pectoralis muscle and the 5 mm layer below the skin to define a

Design Goals of Gancter Layout
- A set of catheters in two planes parallel to the chest wall.
- Planes to sandwich the cavity, one above and one below,
- For larger volumes consider extra plane
- The needles should allow

```
CT_SIMULATION
```

CT_SIMULATION
Preplanning

```
    Preplanning
```

INSERTION NEEDLES MEDIAL SKIN MARKERS
INSERTION NEEDLES LATERAL SKIN MARKERS (exit)
(entrance) source positions 2 cm before and 2 cm beyond the deljneated gavily,

Use the simulated needle arrangement to reconstruct the catheters in PLATO

SNT: N CT_SIMULATION

Preplanning
INSERTION NEEDLE MEDIAL SKIN MARKE
INSERTION NEEDLES
LATERAL SKIN MARKERS
(exit)

Define "Dose Points" encompassing the

 target to be used for volume optimization.

- "Grepheal Opinnzedion Used interectively to dreg lisodose lines on axiel slices and further modity the
 algorithan

100\% line from automatic optimization

100% line dragged with graphical optimization

- Preplan display with Jsodose distideution

Preplan DVH for the PTV meets goals

DVH_0 : Cumulative DVH on PTV. State : Consistent.

DVH_0 : Cumulative DVH on PTV. State : Consistent.


```
&nd exil pojuis -1
```

- Confirm that entrance/ex t positions of each individual catheter on the ot virtual fluoro matches the preplan in Plato

Pre-implant Marking of needle entrance and exit points -2

- Generate AP and LAT DRR's on the Virtual Sim, each centered on the corresponding setup marker.
- The therapist will use these two DRR's to mark the patient.

pre-naplat Marsine

- The day before the procedure, the patient is setup in the Treatment/GJ Position.
- Using both Dilits, the simulator therapist will mark the catheter position on the patient skin.
- The marks will be covered with a clear tape

Verifeadion of mentane of needle entrance and exti polnts can be done with ch nearers pleced over the heflightod stru nerde end

Needle Placement in OR

- A fluoroscopy unit is booked for the procedure (C-arm). The fluoro-unit will assist the physician to guide the insertion.
- Surgeon will scrub the patient. The clear tape will protect the simulation skin marks.
- The patient has to be positioned at
 the edge of the table before the anesthesia to avoid radiographic interference from metal at the side of the table.

Gudjag the needjes according to plean

- The physician should be able to steer the needles from the insertion point if helshe can visuablye the exit point while steering the needle-
- The radiation oncologist will point a lone tweerers at the exit pojnt marts and rotate the c-arin iluoro unft until the entrance and exti points (medial and lateral) overap while the surgeon is steering the needle under iluoror
- It should take about 20 minutes to insert 12-15 needles
- Once all needles are placed, a film, orthogonal to the tmplant can be used to assess the needle algnment
gostr
- The patient is scanned in the treatment posjifon
- CJ planning allows to reconstruct catheters and volumes simultaneously

- Dose volume optimization to dose points on the PTV surface, followed by graphical optimization to the PTV contour lines on axial slices

3D reconstruction across cenderers

3D reconstruchon alone leneth of Pry

Dose Distribution

DVH based plan evaluation

DVH_1 : Cumulative DVH on PTV. State : Consistent.

M1: $511 \mathrm{cGy} 44.1 \mathrm{~cm}{ }^{\wedge} 3$

DVH_1 : Cumulative DVH on PTV. State : Consistent.

DVH_1 : Cumulative DVH on PTV. State : Consistent.

DV/ \downarrow besed plan eveluadion - hhole Breast

M1: $58.6 \mathrm{cGy} 411 \mathrm{~cm}^{\wedge} 3$

Dose Distribution

- Isodoses ($90 \%, 100 \%$, $150 \%, 200 \%$ of $R x$) in the catheters plane

-3D optimized dose distribution. Dose points on the PTV surface 8 mm apart

One month follow-up Evaluation

The medial skin marks are the entrance points for the insertion needles and the flexi-catheters.

[^0]: * Maximum Balloon Variation < 4.0 cc

 S:TRadOncPhysicsMammosite'Daily Simulation.doc

